
Semidefinite Programming Hierarchies

Daniel Alabi

1 Introduction

Recently, my collaborators and I released a paper [2] (also see concurrent work of [6]) about privately

estimating a Gaussian using polynomial-time algorithms. We give the first computationally-efficient

algorithms for estimating a Gaussian (in total variation distance) subject to pure or approximate

differential privacy (DP) guarantees. In the pure DP setting, via a new lower bound, we show that

a dependence on the condition number is necessary. However, in the approximate DP setting, our

sample complexity bound does not depend on the condition number and the algorithms rely on a

method of stabilizing convex relations. Our work leverages the powerful sum-of-squares framework,

which I will try to discuss briefly—from my own vantage point—in this blog post. For a more

pedagogical and complete introduction, please see textbooks or review articles (e.g., [1, 10, 4, 5]).

2 Semidefinite Programming

Semidefinite Programming (SDP) involves minimizing a linear function of a variable x ∈ Rm

subject to a matrix inequality:

min cTx s.t. F (x) ⪰ 0, (1)

where

F (x) = F0 +
m∑
i=1

xiFi.

The vector c ∈ Rm and m + 1 symmetric matrices F0, . . . , Fm ∈ Rn×n are given to the SDP. The

inequality F (x) ⪰ 0 (a linear matrix inequality) enforces that F (x) is positive semidefinite (PSD).

i.e., zTF (x)z ≥ 0 for all z ∈ Rn. An equivalent (and probably more standard) form of the SDP is

to optimize the following objective over symmetric n× n matrices

min Tr(CX) s.t. Tr(AiX) = bi ∀i ∈ [m], X ⪰ 0, (2)

where C,A1, . . . , Am are symmetric n×nmatrices and Tr is the trace operator. Note that Tr(CX) =∑n
i,j CijXij .

An SDP is a convex optimization problem since the objective and constraints are convex. Also

SDP includes linear programming (LP) as a special case. Thus, semidefinite programming is a gen-

eralization of linear programming where componentwise inequalities between vectors are replaced

by matrix inequalities. Many LP solvers can handle semidefinite programs with some important

caveats: duality results are weaker for semidefinite programs and some nonlinear, but convex,

1



2
F(X) FO

Figure 1: Semidefinite program with x ∈ Rn, F (x) ∈ Rm×m for some n,m ∈ Z. e.g., n = 2,m = 7.

optimization problems can be cast as SDPs but not an LP. For example, consider the problem

min
(cTx)2

dTx
s.t. Ax+ b ≥ 0, (3)

where

dTx > 0 whenever Ax+ b ≥ 0.

Then using Schur complements (an exercise for the reader, perhaps) and the introduction of a new

auxilliary variable t, we can reformulate the program as the following SDP:

min t, (4)

subject to diag(Ax+ b) 0 0

0 t cTx

0 cTx dTx

 ⪰ 0.

diag(M) denotes the diagonal matrix that represents all entries of M on the diagonal entries of

the matrix diag(M). We have thus reformulated the nonlinear but convex problem as a semidefinite

program.

The main reason to study and utilize semidefinite programming is because the

programs can be solved efficiently both in theory and practice. For example, see this

Github page that contains instructions on how to run some SoS solvers: https://github.com/

2

https://github.com/sums-of-squares/sos
https://github.com/sums-of-squares/sos


sums-of-squares/sos [1].

3 Sum-of-Squares (SoS) Hierarchy

The SoS hierarchy is a family of convex relaxations to polynomial optimization problems (dating

back to the early 2000s). The hierarchy was independently formulated by Parrilo, Lasserre, and

Shor for the study of polynomial optimization [11, 8, 9, 12].

While its study began as a tool in the optimization and control literature, SoS has found

profound use in proof systems. It has also sparked interest in possibly refuting conjectures related to

hardness of approximation and average-case complexity [3]. In the area of average-case complexity,

the goal is to design algorithms that perform well on typical instances, rather than every instance.

For example, Max-Clique is NP-hard to approximate but a greedy algorithm can find a clique of

size ≈ log n in polynomial time. [3] shows that the degree-8 SoS hierarchy can efficiently solve

integrality gap instances of the UGC (Unique Games Conjecture) problem that other linear and

semidefinite programs cannot solve.

The degree-d SoS relaxation for any optimization problem with n variables has size nO(d) and

can be shown to run in time nO(d). When d = 2, the SoS relaxation is a “simple” semidefinite

program.

3.1 Polynomial Optimization

Let C ⊂ Rn be a convex region parameterized by polynomials {gi}i∈[m] where for all x ∈ C,

gi(x) = 0. The goal is to optimize a polynomial f over C. As we shall see in Section 4, many

important problems such as MaxCut can be represented in this form. Although the generality of

polynomial optimization is appealing, it is not clear how much time (e.g., exponential or polynomial)

is required to optimize the functions. Once the SDP is formulated, we can use the Ellipsoid

algorithm to solve it (approximately) in polynomial time. 1

Let P = (minx∈C f(x), C) be a polynomial optimization problem. We can relax the problem

(by relaxing f, C to f̃ , C̃ respectively) to Q = (miny∈C̃ f̃(y), C̃) so that

val(Q) = min
y∈C̃

f̃(y) ≤ min
x∈C

f(x) = val(P).

Note that even though val(Q) ≤ val(P), not every solution in Q will be satisfiable in P, unless

additional/higher-degree constraints are added.

3.2 Sum-of-Squares (SoS) Relaxations and Duality

Essentially, a degree-d SoS relaxation introduces a variable for each monomial of degree at most

d. The relaxation also introduces affine constraints in these variables to mimic the polynomial

constraints as well as some eigenvalue constraints. 2

1Unlike LPs, no poly-time algorithms are known for solving SDPs exactly. The runtime for solving SDPs depends
on the separation oracle for the convex body. For SoS, the separation oracle is well-defined in terms of pseudo-
distributions. Essentially, a degree-d SoS “certificate” for non-negativity of a function f exists iff for all degree-d
pseudo-distributions µ, the “expected value” of f over µ is at least 0 [5].

2A technical condition that induces the right formulation. e.g., can mimic treating squares of degree-d/2 polyno-
mials as non-negative functions.

3

https://github.com/sums-of-squares/sos
https://github.com/sums-of-squares/sos
https://github.com/sums-of-squares/sos


ri
Figure 2: For N = (n+ 1)d/2, we solve the SDP over X ∈ RN×N .

4 MaxCut, SoS versus Other SDP Hierarchies

Karp famously showed that MaxCut is NP-hard. Let E be the set of edges in a graph. The problem

can be formulated as

max
x∈Rn

∑
(i,j)∈E

1

2
(1− xixj), s.t. x2i = 1∀i ∈ [n]. (5)

Consider the following degree-2 SoS relaxation of MaxCut

max
X∈Rn×n

∑
(i,j)∈E

1

2
(1−Xij), s.t. Xii = 1∀i ∈ [n], X∅ = 1, X ⪰ 0. (6)

which turns out to be equivalent to the Goemans-Williamson relaxation. Higher degree relaxations

give better approximations but with a corresponding increase in runtime.

Thus far, we have only considered the primal view of SoS relaxations. The dual view is quite

powerful: it gives us ways to certify that a SoS relaxation has a value ≥ c for some c ∈ R. The

certificate/proof is in terms of polynomials with degree at most d.

There are other semidefinite programming hierarchies, such as Sherali-Adams and the Approx-

imate Lassserre hierarchies [7, 5]. In my opinion, the main difference between SoS and other

hierarchies is that SoS treats all polynomials equally and others (e.g., Lasserre) do not and so are

not agnostic to the basis choice.

4



5 Acknowledgements

Thanks to Daniel Hsu for comments on a preliminary draft.

References

[1] G. Valmorbida S. Prajna P. Seiler P. A. Parrilo M. M. Peet A. Papachristodoulou, J. Anderson

and D. Jagt. SOSTOOLS: Sum of squares optimization toolbox for MATLAB. 2021. Available

from https://github.com/oxfordcontrol/SOSTOOLS.

[2] Daniel Alabi, Pravesh K. Kothari, Pranay Tankala, Prayaag Venkat, and Fred Zhang. Privately

estimating a gaussian: Efficient, robust and optimal. CoRR, abs/2212.08018, 2022.

[3] Boaz Barak, Fernando G.S.L. Brandao, Aram W. Harrow, Jonathan Kelner, David Steurer,

and Yuan Zhou. Hypercontractivity, sum-of-squares proofs, and their applications. In Pro-

ceedings of the Forty-Fourth Annual ACM Symposium on Theory of Computing, STOC ’12,

page 307–326, 2012.

[4] Grigoriy Blekherman, Pablo A. Parrilo, Rekha R. Thomas, Grigoriy Blekherman, Pablo A.

Parrilo, and Rekha R. Thomas. Semidefinite Optimization and Convex Algebraic Geometry.

Society for Industrial and Applied Mathematics, 2012.

[5] Noah Fleming, Pravesh Kothari, and Toniann Pitassi. Semialgebraic proofs and efficient al-

gorithm design. Foundations and Trends® in Theoretical Computer Science, 14(1-2):1–221,

2019.

[6] Samuel B. Hopkins, Gautam Kamath, Mahbod Majid, and Shyam Narayanan. Robustness

implies privacy in statistical estimation. CoRR, abs/2212.05015, 2022.

[7] Jean B. Lasserre. Global optimization with polynomials and the problem of moments. SIAM

J. Optim., 11(3):796–817, 2001.

[8] Jean B. Lasserre. New Positive Semidefinite Relaxations for Nonconvex Quadratic Programs,

pages 319–331. Springer US, Boston, MA, 2001.

[9] Jean B. Lasserre. Semidefinite programming vs. lp relaxations for polynomial programming.

Mathematics of Operations Research, 27(2):347–360, 2002.

[10] M. Laurent. Sums of squares, moment matrices and optimization over polynomials, pages 155–

270. Number 149 in The IMA Volumes in Mathematics and its Applications Series. Springer

Verlag, Germany, 2009.

[11] Pablo A. Parrilo. Structured semidefinite programs and semialgebraic geometry methods in

robustness and optimization. Dissertation (Ph.D.), California Institute of Technology, 2000.

[12] Naum Z Shor. Quadratic optimization problems. Soviet Journal of Computer and Systems

Sciences, 25(1):1–11, 1987.

5


	Introduction
	Semidefinite Programming
	Sum-of-Squares (SoS) Hierarchy
	Polynomial Optimization
	Sum-of-Squares (SoS) Relaxations and Duality

	MaxCut, SoS versus Other SDP Hierarchies
	Acknowledgements

